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Exploring Genetics Through Genetic Disorders
Teacher Guide

Assigning Allele Profiles
Within each disorder, the alleles are numbered so that the lower numbers are easiest, and the 
difficulty goes up with higher numbers. The alleles for hemophilia and hemoglobin disorders are 
more challenging than the rest. 

All the alleles are based on real ones described in the literature (references are listed at the end). 
We changed the names of the alleles mainly so we could streamline the text for students. The tables 
below include the names that are used by the scientific community. 

Alpha-1 Antitrypsin Deficiency

Allele Type of change Difficulty & notes
D1 — M (Mineral Springs) Single-base substitution Easy
D2 — W (Bethesda) Single-base substitution Easy
D3 — Z Single-base substitution Medium
D4 — M (Malton) Three-base deletion Medium
D5 — NULL (Mattawa) Single-base insertion Medium; the DNA/amino acid data is a 

little harder to interpret
D6 — Pittsburgh Single-base substitution Bonus/Advanced

The Z allele (aka D3) is by far the most common disorder-causing allele of SERPINA1. Another 
common allele, S, is not included in this activity. The S allele codes for a version of AAT protein with 
reduced function that differs from the healthy protein by one amino acid. The S allele is fairly com-
mon, but it generally causes AAT deficiency only when it is in combination with a Z or null allele.

Cystic Fibrosis
The Demo Lab Notebook is filled in with information for allele C1. If you use the Demo, students may 
have an easier time filling in the information for the other cystic fibrosis alleles as well.

Allele Molecular changes Difficulty
C1 — G542X Single-base substitution Easy; don’t assign if using the Demo Lab 

Notebook
C2 — F508del Three-base deletion Easy
C3 — G551D Single-base substitution Easy
C4 — R1070W Single-base substitution Medium

C5 — A455E Single-base substitution Medium
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The F508del allele is the most common disorder-causing allele of CFTR. It’s present in >70% of 
people with the disorder. Most of the work done on R1070W and A455E is done with F508del as the 
second allele. To make the data more understandable, we estimated the sweat chloride levels for 
R1070W / R1070W and A455E / A455E, based on papers that studied protein function.

Hemoglobin Disorders
These disorders are a little on the tricky side. Variations in the HBB gene can cause several distinct 
disorders, and the symptoms and molecular mechanisms vary widely. To understand their alleles, 
students will need to read and process more information.

Allele Molecular changes Difficulty
HB1 — HbS Single-base substitution Medium
HB2 — HbC Single-base substitution. Medium

HB3 — Glu6FS Single-base deletion Medium
HB4 — HbE Single-base substitution Medium+
HB5 — E121 to TER Single-base substitution Advanced
HB6 — Hemoglobin Denver Single-base substitution Advanced

HbS is the most common allele in sickle cell disease. HbC and HbE, because they also contribute to 
malaria resistance, are also quite common. The other alleles are rare.

Hemophilia
This disorder is a little tricky. It takes a little work to understand how the proteins interact with others 
to help blood clot, and how the variations affect those interactions. 

In the literature, F8 and F9 alleles are referred to by a code that indicates the position of the change 
in the amino acid sequence and the type of change. The amino acid numbering system changed 
around the year 2000. We use the current system, though some publications still use “Legacy” 
numbering. See reference section for details.

Gene, Allele Molecular changes Difficulty and notes
H1 — F8, A415V Single-base substitution Easy
H2 — F9, R449Q Single-base substitution Easy
H3 — F9, L19F*1 Single-base deletion Easy
H4 — F8, A303E Single-base substitution Medium
H5 — F9, F55I Single-base substitution Medium. 

H6 — F8, intron 
22 inversion

Chromosomal inversion. 
A piece of chromosome 
broke away, rotated 180 
degrees, and fused back 
in place. 

Bonus/Advanced. The molecular changes are quite 
different from those for the other alleles. There’s a 
lot to read & process about the rearrangement, and 
it may be helpful to have some knowledge of gene 
regulation. 
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The H6 allele is the most common allele in hemophilia. It’s found in nearly 50% of all severe cases. 
Many of the other hemophilia alleles are the result of “founder effect,” and a specific allele can be 
traced back to a common ancestor. In different parts of the world, new mutations occurred, creating 
new alleles that were passed on. This is why different hemophilia alleles tend to be more common in 
people with ancestors from different places. For example, the H2 allele is one of the most common 
alleles in people with French ancestry, but it is rare in other populations.

Marfan Syndrome
Autosomal dominant inheritance pattern. In the literature, FBN1 alleles are usually referred to by a 
code that indicates the position of the change in the amino acid sequence and the type of change. 

Allele Molecular changes Difficulty
M1 — G1013R Single-base substitution Easy
M2 — C2686F Single-base substitution Easy
M3 — I1892X Five-base insertion (ACACT) Medium
M4 — R2726W Single-base substitution Medium
M5 — C1564S Single-base substitution Medium

Most people with Marfan syndrome have an allele that is unique to their family. In fact, only about 
10% of alleles are shared by another family. With the exception of neonatal Marfan syndrome, few 
connections have been made between the type of allele a person has and the severity of the symp-
toms they experience. 

Demo Lab Notebook
A Demo Lab Notebook is provided as a pdf with information filled in for Cystic Fibrosis allele C1. We 
suggest projecting the demo lab notebook and showing students how to fill in each section.

Notes on mRNA and protein sequences
Students will get the most from this unit if they have the correct information in the Mutation & Al-
leles section of their Lab Notebooks. Please print the correct sequences from the answer key and 
give each student a strip of paper with the information for their allele. They can use it to check their 
answers and correct any errors.

Here are places where students commonly run into trouble:

• Transcribing the wrong DNA strand: Make sure students copy the template strand (printed in 
darker text, with upside-down letters)

• Transcribing in the wrong direction: Make sure students go from left to right as they both read 
the DNA template and write the mRNA sequence.

• Misreading the Amino Acid Coding chart: You may want to go over this with students before 
they begin this section.
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